Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 244
Filtrar
1.
bioRxiv ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38766245

RESUMO

Streptococcus mutans, the causative agent of human dental caries, expresses a cell wall attached Serotype c- specific Carbohydrate (SCC) that is critical for cell viability. SCC consists of a repeating →3)α-Rha(1→2)α-Rha(1→ polyrhamnose backbone, with glucose (Glc) side-chains and glycerol phosphate (GroP) decorations. This study reveals that SCC has one major and two minor Glc modifications. The major Glc modification, α-Glc, attached to position 2 of 3-rhamnose, is installed by SccN and SccM glycosyltransferases and is the site of the GroP addition. The minor Glc modifications are ß-Glc linked to position 4 of 3-rhamnose installed by SccP and SccQ glycosyltransferases, and α-Glc attached to position 4 of 2-rhamnose installed by SccN working in tandem with an unknown enzyme. Both the major and the minor ß-Glc modifications control bacterial morphology, but only the GroP and major Glc modifications are critical for biofilm formation.

3.
Chemosphere ; 359: 142332, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754493

RESUMO

Perfluorooctanesulfonic acid (PFOS) is a widely recognized environment pollutant known for its high bioaccumulation potential and a long elimination half-life. Several studies have shown that PFOS can alter multiple biological pathways and negatively affect human health. Considering the direct exposure to the gastrointestinal (GI) tract to environmental pollutants, PFOS can potentially disrupt intestinal homeostasis. However, there is limited knowledge about the effect of PFOS exposure on normal intestinal tissues, and its contribution to GI-associated diseases remains to be determined. In this study, we examined the effect of PFOS exposure on the gene expression profile of intestinal tissues of C57BL/6 mice using RNAseq analysis. We found that PFOS exposure in drinking water significantly downregulates mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), a rate-limiting ketogenic enzyme, in intestinal tissues of mice. We found that diets containing the soluble fibers inulin and pectin, which are known to be protective against PFOS exposure, were ineffective in reversing the downregulation of HMGCS2 expression in vivo. Analysis of intestinal tissues also demonstrated that PFOS exposure leads to upregulation of proteins implicated in colorectal carcinogenesis, including ß-catenin, c-MYC, mTOR and FASN. Consistent with the in vivo results, PFOS exposure leads to downregulation of HMGCS2 in mouse and human normal intestinal organoids in vitro. Furthermore, we show that shRNA-mediated knockdown of HMGCS2 in a human normal intestinal cell line resulted in increased cell proliferation and upregulation of key proliferation-associated proteins such as cyclin D, survivin, ERK1/2 and AKT, along with an increase in lipid accumulation. In summary, our results suggest that PFOS exposure may contribute to pathological changes in normal intestinal cells via downregulation of HMGCS2 expression and upregulation of pro-carcinogenic signaling pathways that may increase the risk of colorectal cancer development.

4.
Microbiome ; 12(1): 90, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750595

RESUMO

BACKGROUND: Gut microbiome metabolites are important modulators of host health and disease. However, the overall metabolic potential of the gut microbiome and interactions with the host organs have been underexplored. RESULTS: Using stable isotope resolved metabolomics (SIRM) in mice orally gavaged with 13C-inulin (a tracer), we first observed dynamic enrichment of 13C-metabolites in cecum contents in the amino acids and short-chain fatty acid metabolism pathways. 13C labeled metabolites were subsequently profiled comparatively in plasma, liver, brain, and skeletal muscle collected at 6, 12, and 24 h after the tracer administration. Organ-specific and time-dependent 13C metabolite enrichments were observed. Carbons from the gut microbiome were preferably incorporated into choline metabolism and the glutamine-glutamate/GABA cycle in the liver and brain, respectively. A sex difference in 13C-lactate enrichment was observed in skeletal muscle, which highlights the sex effect on the interplay between gut microbiome and host organs. Choline was identified as an interorgan metabolite derived from the gut microbiome and fed the lipogenesis of phosphatidylcholine and lysophosphatidylcholine in host organs. In vitro and in silico studies revealed the de novo synthesis of choline in the human gut microbiome via the ethanolamine pathway, and Enterococcus faecalis was identified as a major choline synthesis species. These results revealed a previously underappreciated role for gut microorganisms in choline biosynthesis. CONCLUSIONS: Multicompartmental SIRM analyses provided new insights into the current understanding of dynamic interorgan metabolite transport between the gut microbiome and host at the whole-body level in mice. Moreover, this study singled out microbiota-derived metabolites that are potentially involved in the gut-liver, gut-brain, and gut-skeletal muscle axes. Video Abstract.


Assuntos
Isótopos de Carbono , Microbioma Gastrointestinal , Metabolômica , Músculo Esquelético , Animais , Camundongos , Metabolômica/métodos , Isótopos de Carbono/metabolismo , Masculino , Músculo Esquelético/metabolismo , Feminino , Encéfalo/metabolismo , Fígado/metabolismo , Colina/metabolismo , Camundongos Endogâmicos C57BL , Humanos , Ácidos Graxos Voláteis/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38770998

RESUMO

Tin dioxide (SnO2), in perovskite solar cells (PSCs), stands out as the material most suited to the electron transport layer (ETL), yielding advantages with regard to ease of preparation, high mobility, and favorable energy level alignment. Nonetheless, there is a chance that energy losses from defects in the SnO2 and interface will result in a reduction in the Voc. Consequently, optimizing the interfaces within solar cell devices is a key to augmenting both the efficiency and the stability of PSCs. Herein this present study, we introduced butylammonium chloride (BACl) into the SnO2 ETL. The resulting optimized SnO2 film mitigated interface defect density, thereby improving charge extraction. The robust bonding capability of negatively charged Cl- ions facilitated their binding with noncoordinated Sn4+ ions, effectively passivating defects associated with oxygen vacancies and enhancing charge transport within the SnO2 ETL. Concurrently, doped BA+ and Cl- diffused into the perovskite lattice, fostering perovskite grain growth and reducing the defects in perovskite. In comparison to the control device, the Voc saw a 70 mV increase, achieving a champion efficiency of 22.86%. Additionally, following 1000 h of ambient storage, the unencapsulated device based on SnO2 preburied with BACl retained around 90% of its initial photovoltaic conversion efficiency.

6.
Nat Commun ; 15(1): 3514, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664401

RESUMO

Amino acid availability is monitored by animals to adapt to their nutritional environment. Beyond gustatory receptors and systemic amino acid sensors, enteroendocrine cells (EECs) are believed to directly percept dietary amino acids and secrete regulatory peptides. However, the cellular machinery underlying amino acid-sensing by EECs and how EEC-derived hormones modulate feeding behavior remain elusive. Here, by developing tools to specifically manipulate EECs, we find that Drosophila neuropeptide F (NPF) from mated female EECs inhibits feeding, similar to human PYY. Mechanistically, dietary L-Glutamate acts through the metabotropic glutamate receptor mGluR to decelerate calcium oscillations in EECs, thereby causing reduced NPF secretion via dense-core vesicles. Furthermore, two dopaminergic enteric neurons expressing NPFR perceive EEC-derived NPF and relay an anorexigenic signal to the brain. Thus, our findings provide mechanistic insights into how EECs assess food quality and identify a conserved mode of action that explains how gut NPF/PYY modulates food intake.


Assuntos
Ingestão de Alimentos , Células Enteroendócrinas , Ácido Glutâmico , Neuropeptídeos , Peptídeo YY , Animais , Células Enteroendócrinas/metabolismo , Feminino , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Ingestão de Alimentos/fisiologia , Peptídeo YY/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Comportamento Alimentar/fisiologia , Receptores de Glutamato Metabotrópico/metabolismo , Neurônios Dopaminérgicos/metabolismo , Dieta
7.
Front Microbiol ; 15: 1343265, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38591043

RESUMO

Introduction: The soybean hawkmoth, Clanis bilineata tsingtauica, is an edible insect that possesses high nutritional, medicinal and economic value. It has developed into a characteristic agricultural industry in China. Methods: The dominant gut bacterium in diapause larvae of soybean hawkmoths was identified by metagenomics, and the effect of diapause time on gut microbiome composition, diversity and function was investigated. Results: Enterococcus and Enterobacter were measured to be the dominant genera, with Enterococcus casseliflavus and Enterococcus pernyi being the dominant species. Compared to the controls, the relative abundance of E. casseliflavus and E. pernyi on day 14 was lower by 54.51 and 42.45%, respectively. However, the species richness (including the index of Chao and ACE) of gut microbiota increased on day 28 compared to controls. The gene function was mainly focused on carbohydrate and amino acid metabolism. Metabolic pathways annotated for amino acids on day 14 increased by 9.83% compared to controls. It is speculated that diapause soybean hawkmoths may up-regulate amino acid metabolism by reducing E. casseliflavus abundance to maintain their nutritional balance. Additionally, tetracycline, chloromycetin and ampicillin were screened as the top three antibiotics against E. casseliflavus. Discussion: This study not only extends our knowledge of gut microbiome in soybean hawkmoths at the species level, but also provides an initial investigation of gene functionality in interaction with insect hosts.

8.
Front Physiol ; 15: 1345836, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38651047

RESUMO

Mylabris sibirica is a hypermetamorphic insect whose adults feed on oilseed rape. However, due to a shortage of effective and appropriate endogenous references, studies on molecular functional genes in Mylabris sibirica, have been tremendously limited. In this study, ten internal reference genes (ACT, ARF1, AK, EF1α, GAPDH, α-TUB, RPL6, RPL13, RPS3 and RPS18) were tested and assessed under four selected treatments including adult ages, adult tissues, temperatures, and sex by RT-qPCR based on five methods (Ct value, geNorm, NormFinder, BestKeeper and RefFinder). Our findings showed that RPL6 and RPL13 were the most optimal internal reference gene combination for gene expression during various adult ages and under diverse temperatures; The combination of RPL6 and RPS18 was recommended to test gene transcription levels under different adult tissues. AK and RPL6 were the best reference genes in male and female adults. RPL6 and RPL13 were the most appropriate reference gene pair to estimate gene expression levels under four different tested backgrounds. The relative transcript levels of a uridine diphosphate (UDP)-N-acetylglucosamine-pyrophosphorylase (MsUAP), varied greatly according to normalization with the two most- and least-suited reference genes. This study will lay the basis for further molecular physiology and biochemistry studies in M. sibirica, such as development, reproduction, sex differentiation, cold and heat resistance.

9.
Animal ; 18(4): 101116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484632

RESUMO

The Yongdeng Qishan sheep (QS) is a sheep population found locally in China. To gain in-depth knowledge of its population characteristics, three control groups were chosen, comprising the Lanzhou fat-tailed sheep (LFT), TAN sheep (TAN), and Minxian black fur sheep (MBF), inhabiting the nearby environments. This study genotyped a total of 120 individuals from four sheep populations: QS, LFT, TAN, and MBF. Using Specific-Locus Amplified Fragment Sequencing, we conducted genetic diversity, population structure, and selective sweep analysis, and constructed the fingerprint of each population. In total, there were 782 535 single nucleotide polymorphism (SNP) variations identified, with most being situated within regions that are intergenic or intronic. The genetic diversity analysis revealed that the QS population exhibited lower genetic diversity compared to the other three populations. Consistent results were obtained from the principal component, phylogenetic tree, and population structure analysis, indicating significant genetic differences between QS and the other three populations. However, a certain degree of differentiation was observed within the QS population. The linkage disequilibrium (LD) patterns among the four populations showed clear distinctions, with the QS group demonstrating the most rapid LD decline. Kinship analysis supported the findings of population structure, dividing the 90 QS individuals into two subgroups consisting of 23 and 67 individuals. Selective sweep analysis identified a range of genes associated with reproduction, immunity, and adaptation to high-altitude hypoxia. These genes hold potential as candidate genes for marker-assisted selection breeding. Additionally, a total of 86 523 runs of homozygosity (ROHs) were detected, showing non-uniform distribution across chromosomes, with chromosome 1 having the highest coverage percentage and chromosome 26 the lowest. In the high-frequency ROH islands, 79 candidate genes were associated with biological processes such as reproduction and fat digestion and absorption. Furthermore, a DNA fingerprint was constructed for the four populations using 349 highly polymorphic SNPs. In summary, our research delves into the genetic diversity and population structure of QS population. The construction of DNA fingerprint profiles for each population can provide valuable references for the identification of sheep breeds both domestically and internationally.


Assuntos
Impressões Digitais de DNA , Genoma , Humanos , Ovinos/genética , Animais , Filogenia , Impressões Digitais de DNA/veterinária , Genótipo , Genômica , Polimorfismo de Nucleotídeo Único
10.
Commun Biol ; 7(1): 386, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553656

RESUMO

The release of cellular DNA as neutrophil extracellular traps (NETs) plays a pivotal role in the immune response to pathogens by physically entrapping and killing microbes. NET release occurs at a greater frequency within neutrophil clusters and swarms, indicating a potential for collective behavior. However, little is known about how dense clustering of cells influences the frequency of NET release. Using an image-based assay for NETosis in nanowells, we show that the frequency of NETosis increases with cell density. We then co-incubate NETotic neutrophils with naïve neutrophils and find that NETotic neutrophils can induce secondary NETosis in naïve neutrophils in a cell density-dependent manner. Further mechanistic studies show that secondary NETosis is caused by a combination of DNA and protein factors. Finally, we immobilize NETotic neutrophils in a plaque, and then place the plaque near naïve neutrophils to characterize the spatial propagation of secondary NETosis. We find that secondary NETosis from naïve neutrophils increases over time, but remains spatially restricted to the periphery of the plaque. Together, we show that NETosis is an auto-amplified process, but that the spatial propagation of NET release is strictly regulated.


Assuntos
Armadilhas Extracelulares , Neutrófilos/metabolismo , DNA/metabolismo
11.
Elife ; 122024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345852

RESUMO

Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 knockout (KO) mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.


Assuntos
Síndrome do Cromossomo X Frágil , Transtornos Mentais , Camundongos , Animais , Neurônios/fisiologia , Interneurônios/metabolismo , Modelos Animais de Doenças , Giro Denteado/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo
12.
J Alzheimers Dis ; 97(3): 1381-1392, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250768

RESUMO

BACKGROUND: Mitochondrial dysfunction plays a vital role in the progression of vascular dementia (VaD). We hypothesized that transfer of exogenous mitochondria might be a beneficial strategy for VaD treatment. OBJECTIVE: The study was aimed to investigate the role of mitochondrial therapy in cognitive function of VaD. METHODS: The activity and integrity of isolated mitochondria were detected using MitoTracker and Janus Green B staining assays. After VaD mice were intravenously injected with exogenous mitochondria, Morris water maze and passive avoidance tests were used to detect cognitive function of VaD mice. Haematoxylin and eosin, Nissl, TUNEL, and Golgi staining assays were utilized to measure neuronal and synaptic injury in the hippocampus of VaD mice. Detection kits were performed to detect mitochondrial membrane potential (ΔΨ), SOD activity and the levels of ATP, ROS, and MDA in the brains of VaD mice. RESULTS: The results showed that isolated mitochondria were intact and active. Mitochondrial therapy could ameliorate cognitive performance of VaD mice. Additionally, mitochondrial administration could attenuate hippocampal neuronal and synaptic injury, improve mitochondrial ΔΨ, ATP level and SOD activity, and reduce ROS and MDA levels in the brains of VaD mice. CONCLUSIONS: The study reports profitable effect of mitochondrial therapy against cognitive impairment of VaD, making mitochondrial treatment become a promising therapeutic strategy for VaD.


Assuntos
Disfunção Cognitiva , Demência Vascular , Camundongos , Animais , Demência Vascular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cognição , Disfunção Cognitiva/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias , Trifosfato de Adenosina/metabolismo , Aprendizagem em Labirinto/fisiologia , Hipocampo/metabolismo
13.
Mol Neurobiol ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38087171

RESUMO

Enhancement of oxidative stress and resultant neuronal injury play important roles in initiating cognitive impairment during the aging process. Thus, attenuating oxidative injury is regarded as a profitable therapeutic strategy for age-associated cognitive impairment. Previous studies showed that gliclazide (Gli) had a protective role in neuronal injury from cerebral ischemia/reperfusion (I/R) injury. However, whether Gli has a profitable effect on age-associated cognitive impairment remains largely unclear. The present study showed that Gli held the potential to attenuate neuronal apoptosis in D-gal-induced senescent cells and aging mice. Additionally, Gli could alleviate synaptic injury and cognitive function in D-gal-induced aging mice. Further study showed that Gli could attenuate oxidative stress in D-gal-induced senescent cells and aging mice. The p38 MAPK pathway was predicted as the downstream target of Gli retarding oxidative stress using in silico analysis. Further studies revealed that Gli attenuated D-gal-induced phosphorylation of p38 and facilitated Nrf2 nuclear expression, indicating that the anti-oxidative property of Gli may be associated with the p38 MAPK pathway. The study demonstrates that Gli has a beneficial effect on ameliorating D-gal-induced neuronal injury and cognitive impairment, making this compound a promising agent for the prevention and treatment of age-associated cognitive impairment.

14.
Genome Biol ; 24(1): 266, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996959

RESUMO

Linking cis-regulatory sequences to target genes has been a long-standing challenge. In this study, we introduce CREaTor, an attention-based deep neural network designed to model cis-regulatory patterns for genomic elements up to 2 Mb from target genes. Coupled with a training strategy that predicts gene expression from flanking candidate cis-regulatory elements (cCREs), CREaTor can model cell type-specific cis-regulatory patterns in new cell types without prior knowledge of cCRE-gene interactions or additional training. The zero-shot modeling capability, combined with the use of only RNA-seq and ChIP-seq data, allows for the ready generalization of CREaTor to a broad range of cell types.


Assuntos
Redes Neurais de Computação , Sequências Reguladoras de Ácido Nucleico
15.
Environ Pollut ; 339: 122756, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37844865

RESUMO

The development and outcome of inflammatory diseases are associated with genetic and lifestyle factors, which include chemical and nonchemical stressors. Persistent organic pollutants (POPs) are major groups of chemical stressors. For example, dioxin-like polychlorinated biphenyls (PCBs), per- and polyfluoroalkyl substances (PFASs), and polybrominated diphenyl ethers (PBDEs) are closely associated with the incidence of inflammatory diseases. The pathology of environmental chemical-mediated inflammatory diseases is complex and may involve disturbances in multiple organs, including the gut, liver, brain, vascular tissues, and immune systems. Recent studies suggested that diet-derived nutrients (e.g., phytochemicals, vitamins, unsaturated fatty acids, dietary fibers) could modulate environmental insults and affect disease development, progression, and outcome. In this article, mechanisms of environmental pollutant-induced inflammation and cardiometabolic diseases are reviewed, focusing on multi-organ interplays and highlighting recent advances in nutritional strategies to improve the outcome of cardiometabolic diseases associated with environmental exposures. In addition, advanced system biology approaches are discussed, which present unique opportunities to unveil the complex interactions among multiple organs and to fuel the development of precision intervention strategies in exposed individuals.


Assuntos
Doenças Cardiovasculares , Poluentes Ambientais , Bifenilos Policlorados , Humanos , Poluentes Orgânicos Persistentes , Poluentes Ambientais/toxicidade , Poluentes Ambientais/análise , Bifenilos Policlorados/toxicidade , Bifenilos Policlorados/análise , Éteres Difenil Halogenados/toxicidade , Éteres Difenil Halogenados/análise , Inflamação/induzido quimicamente , Doenças Cardiovasculares/induzido quimicamente
16.
Chemosphere ; 344: 140437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37838034

RESUMO

Barite ore is typically associated with difficult-to-remove vein minerals, but commercial barite products require a high BaSO4 content. We investigated the occurrence state of fluoride in barite ore using various analytical techniques, which indicated that elemental fluorine in barite predominantly exists as fluorite. Fluoride was then leached from barite ore via complexation. The effects of HCl and AlCl3 concentrations, temperature, time, and liquid-solid ratio on the leaching rate were examined, and the leaching conditions were optimized using an orthogonal array method. The fluorine leaching rate approached 93.11% after stirring for 30 min at 90 °C and 300 rpm with 3 mol/L HCl, 0.4 mol/L AlCl3, a liquid-solid ratio of 10:1 mL/g, and an ore sample size of -75 µm + 48 µm. According to the leaching kinetics, the process conformed to the solid membrane diffusion control model at a high temperature and the joint chemical reaction-diffusion control model at a low temperature. The apparent activation energy was 56.88 kJ/mol. Furthermore, aluminum and fluorine coordination numbers increased with increasing Al3+/F- molar concentration ratios. Competing complexation reactions of Al3+, H+, and F- occurred at three levels. This complexation approach effectively leaches fluoride from barite, improves barite product quality, and reduces environmental pollution.


Assuntos
Sulfato de Bário , Fluoretos , Flúor , Alumínio , Minerais
17.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37808793

RESUMO

Abnormal cellular and circuit excitability is believed to drive many core phenotypes in fragile X syndrome (FXS). The dentate gyrus is a brain area performing critical computations essential for learning and memory. However, little is known about dentate circuit defects and their mechanisms in FXS. Understanding dentate circuit dysfunction in FXS has been complicated by the presence of two types of excitatory neurons, the granule cells and mossy cells. Here we report that loss of FMRP markedly decreased excitability of dentate mossy cells, a change opposite to all other known excitability defects in excitatory neurons in FXS. This mossy cell hypo-excitability is caused by increased Kv7 function in Fmr1 KO mice. By reducing the excitatory drive onto local hilar interneurons, hypo-excitability of mossy cells results in increased excitation/inhibition ratio in granule cells and thus paradoxically leads to excessive dentate output. Circuit-wide inhibition of Kv7 channels in Fmr1 KO mice increases inhibitory drive onto granule cells and normalizes the dentate output in response to physiologically relevant theta-gamma coupling stimulation. Our study suggests that circuit-based interventions may provide a promising strategy in this disorder to bypass irreconcilable excitability defects in different cell types and restore their pathophysiological consequences at the circuit level.

18.
Front Toxicol ; 5: 1244457, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662676

RESUMO

PFAS (per- and polyfluoroalkyl substances) are organofluorine substances that are used commercially in products like non-stick cookware, food packaging, personal care products, fire-fighting foam, etc. These chemicals have several different subtypes made of varying numbers of carbon and fluorine atoms. PFAS substances that have longer carbon chains, such as PFOS (perfluorooctane sulfonic acid), can potentially pose a significant public health risk due to their ability to bioaccumulate and persist for long periods of time in the body and the environment. The National Academies Report suggests there is some evidence of PFOS exposure and gastrointestinal (GI) inflammation contributing to ulcerative colitis. Inflammatory bowel diseases such as ulcerative colitis are precursors to colorectal cancer. However, evidence about the association between PFOS and colorectal cancer is limited and has shown contradictory findings. This review provides an overview of population and preclinical studies on PFOS exposure and GI inflammation, metabolism, immune responses, and carcinogenesis. It also highlights some mitigation approaches to reduce the harmful effects of PFOS on GI tract and discusses the dietary strategies, such as an increase in soluble fiber intake, to reduce PFOS-induced alterations in cellular lipid metabolism. More importantly, this review demonstrates the urgent need to better understand the relationship between PFOS and GI pathology and carcinogenesis, which will enable development of better approaches for interventions in populations exposed to high levels of PFAS, and in particular to PFOS.

19.
J Chromatogr A ; 1710: 464404, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37769425

RESUMO

This paper presents a multiple headspace extraction (MHE) analysis technique to determine the water vapor transmission rate of cellulose-based papers. The water vapor passing through the sample in a closed headspace vial is determined by MHE-gas chromatography. The results show that the employed method offers good precision (the relative standard deviation < 3.49 %) and good accuracy. The method is rapid and accurate, and is promising for the determination of the water vapor transmission rate of cellulose-based papers in future studies.

20.
Biology (Basel) ; 12(7)2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37508340

RESUMO

Viruses in the genus Polerovirus infect a wide range of crop plants and cause severe economic crop losses. BrYV belongs to the genus Polerovirus and is transmitted by Myzus persicae. However, the changes in transcriptome and proteome profiles of M. persicae during viral infection are unclear. Here, RNA-Seq and TMT-based quantitative proteomic analysis were performed to compare the differences between viruliferous and nonviruliferous aphids. In total, 1266 DEGs were identified at the level of transcription with 980 DEGs being upregulated and 286 downregulated in viruliferous aphids. At the protein level, among the 18 DEPs identified, the number of upregulated proteins in viruliferous aphids was twice that of the downregulated DEPs. Enrichment analysis indicated that these DEGs and DEPs were mainly involved in epidermal protein synthesis, phosphorylation, and various metabolic processes. Interestingly, the expressions of a number of cuticle proteins and tubulins were upregulated in viruliferous aphids. Taken together, our study revealed the complex regulatory network between BrYV and its vector M. persicae from the perspective of omics. These findings should be of great benefit to screening key factors involved in the process of virus circulation in aphids and provide new insights for BrYV prevention via vector control in the field.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...